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Agenda

● Low Latency 

● CPU cacheline contention

● A few compiler & tools tips 

● Fundamental kernel internals:

● Function wrt to performance 
● Tuning
● Interactions between file systems, memory, & 

devices
● Throughput vs latency tuning
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Brief background
Tuned basics
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  What is “tuned” ?

● Tuning profile delivery mechanism
● Many linux distros ship tuned profiles that 

improve performance for many 
workloads…

● Customize your own profile.
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 Tuned (cont)

# tuned-adm list
 Available profiles:
   - balanced
   - cpu-partitioning                   << New in 7.4
   - desktop
   - latency-performance
   - network-latency
   - network-throughput
   - powersave
   - throughput-performance
   - virtual-guest
   - virtual-host  
  Current active profile: balanced
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Setting tuned

What is my system currently tuned to?
•# tuned-adm active
    Current active profile: balanced

How do I change my current tuning setting?
•# tuned-adm profile network-latency
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throughput-performance (RHEL7 default)

• governor=performance

• energy_perf_bias=performance

• min_perf_pct=100

• readahead=4096

• kernel.sched_min_granularity_ns = 10000000

• kernel.sched_wakeup_granularity_ns = 15000000

• vm.dirty_background_ratio = 10

• vm.swappiness=10
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  Tuned: Profile Inheritance (throughput)

throughput-performance

network-throughput

governor=performance
energy_perf_bias=performance
min_perf_pct=100
readahead=4096
kernel.sched_min_granularity_ns = 10000000
kernel.sched_wakeup_granularity_ns = 15000000
vm.dirty_background_ratio = 10
vm.swappiness=10

net.ipv4.tcp_rmem="4096 87380 16777216"
net.ipv4.tcp_wmem="4096 16384 16777216"
net.ipv4.udp_mem="3145728 4194304 16777216"
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Children

Parents

  Tuned: Profile Inheritance

latency-performancethroughput-performance

network-latencynetwork-throughput

virtual-host

virtual-guest

balanced

desktop

Your-DBYour-Web Your-Middleware
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Low Latency Considerations
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   Throughput: Bandwidth: # lanes in Highway
   - Width of data path / cachelines
   - Bus Bandwidth, QPI links, PCI 1-2-3
   - Network 1 / 10 / 40 Gb – aggregation, NAPI 
   - Fiberchannel 4/8/16, SSD, NVME Drivers

Latency – Speed Limit
- Ghz of CPU, Memory PCI
- Small transfers, disable 
  aggregation – TCP nodelay
- Dataplane optimization DPDK

 

Performance Metrics
Latency==Speed          Throughput==Bandwidth 
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Isolcpus – widely used
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Boot with “isolcpus=1,5,9,13,17,20,24,28,32,36”

Run your application(s) that pins individual threads to the isolated cores.

Life is good.
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Isolcpus – no scheduler load balancing

Boot your system with “isolcpus=1,2,3,4”

Then run:
   taskset -c 1,2,3,4  yes  > /dev/null &  
   taskset -c 1,2,3,4  yes  > /dev/null &
   taskset -c 1,2,3,4  yes  > /dev/null &
   taskset -c 1,2,3,4  yes  > /dev/null &

Result:  All four “yes” processes will run only on cpu 1.
             CPUs 2,3 and 4 will be idle.
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Isolcpus – no scheduler load balancing

Then try:
   taskset -c 1  yes > /dev/null &

   taskset -c 2  yes > /dev/null &

   taskset -c 3  yes > /dev/null &

          taskset -c 4  yes > /dev/null &
Or:

   taskset -c 1,2,3,4  chrt --rr 1 yes > /dev/null &

   taskset -c 1,2,3,4  chrt --rr 1 yes > /dev/null &

   taskset -c 1,2,3,4  chrt --rr 1 yes > /dev/null &

   taskset -c 1,2,3,4  chrt --rr 1 yes > /dev/null &

Result:  All four “yes” processes will be spread across cpus 1,2,3,4
With kernel isolcpus, 

●  must manually pin processes or individual threads,  
●  or use realtime scheduling (chrt)
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Isolcpus doesn’t work for larger applications
VNF Mobile Network - Graphical CPU Partitioning

:  isolcpus=1-19,21-39,41-59,61-79
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New “cpu-partitioning” tuned profile

● For latency sensitive applications needing kernel 
scheduler load balancing:

● Decide which cpus you want to allocated to it.
● Add those cpus to a tuned configuration file.

 /etc/tuned/cpu-partitioning-variables.conf
● Set the cpu-partitioning tuned profile.

 # tuned-adm profile cpu-partitioning
● Then reboot!
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Cpu-partitioning – after reboot you have: 

Sets cpu affinity mask away from isolated cpus for:
●  All processes spawned by systemd, IRQs, RCU callbacks
●  Kernel thread issuing dirty page writebacks
●  Kworker workqueues for interrupts, timers, I/O, etc.

Sets nohz_full on isolated cpus

Disables intel idle driver to prevent frequency scaling

Sets nosoftlockup and disables KSM (kernel same page merging)

Sets mce=ignore_ce (preventing periodic polling of machine check 
banks)

Sets pause loop exit and ple_gap KVM options set to minimize VM exits

Uses tuna to move all user processes away from isolated cpus.
   For example:  # tuna -c 4,5,6,7 -i
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Cpu-partitioning – after reboot (continued): 
● kernel.hung_task_timeout_secs = 600 

● kernel.nmi_watchdog = 0 

● vm.stat_interval = 10

● kernel.timer_migration = 1 

● net.core.busy_read = 50 and net.core.busy_poll = 50 

● kernel.numa_balancing = 0 

● kernel.sched_min_granularity_ns = 10000000 

● vm.dirty_ratio = 10 

● vm.dirty_background_ratio = 3 

● vm.swappiness = 10 

● kernel.sched_migration_cost_ns = 5000000 

● Disable Transparent Hugepages
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Cpu-partitioning – after reboot (continued): 

Also sets these tuned parameters
● force_latency = 1
● governor = performance
● energy_perf_bias = performance
● min_perf_pct = 100

Does not set the “isolcpus=” kernel cpu flag 
● isolcpus= disables the load balancer 
● We’ve measured load balancer hit to be about 40 usec
● Disabling load balancer will soon be an option.  

 “no_rebalance_cores=” coming soon.

Also does not set the “skew_tick=1” flag (yet)
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Cstate considerations

● C0 
● Most responsive – cpus fully turned on 
● Prevents turbo mode.

● C1
● Most common.  
● Red Hat uses C1 in its tuned profiles.

● C3
● We’re seeing *a few* applications run faster with C3.
● Lowering all cpus to C3 allows for more turbo headroom 

for the cpus that need it.
● Depends on your application
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Cache Allocation & Cache Monitoring Technology
Noisy Cacheline Neighbor

Hi Priority 
  Program

LO Priority
Program

CPU 0,1 CPU 2,3

Shared Last Level Cache:  
(Low Priority Program gets more cache)

Hi Priority 
Program

LO Priority
Program

CPU 0,1 CPU 2,3

Shared Last Level Cache:  
(HIGH Priority Program gets more cache)

Available in RHEL 7.4 via the intel-cmt-cat-*.el7 package.
See ‘man pqos’
Intel only.  (Some Haswells, all Broadwells, Skylake errata) 

VS:

New 
in7.4
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Memory latency testing using CAT
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Process Tuning Tool - tuna
● Fine grained control
● Display applications 

& processes 
● CPU enumeration
● Socket (useful for 

NUMA tuning)
● Dynamic control of: 

● Process affinity 

● Parent & threads 

● Scheduling policy

● Device IRQ priorities, 
etc
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tuna command line
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Tuna – command line examples

Move an irq to cpu 5
●  tuna -c5 -q eth4-rx-4 –move

Move all irqs named “eth4*” away from numa node 1
●  tuna -S 1 -i -q ‘eth4*’ 

Move all rcu kernel threads to cpus 1 and 3
● tuna -c1,3 -t ‘*rcu*’ --move
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Tuna GUI Capabilities Updated for RHEL7
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Questions
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Identifying cpu cacheline 
contention
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Look at a simple example false sharing 
example:

Two scenarios of a basic data structure

  struct false_sharing_buf {                  // Reader & writer
       long writer;                                    // fields together 
       long reader;  
  } buf ;

  
  struct uncontended_buf {                  // Writer fields 
       long writer;                                   // separated from 
       long pad[7];                                  // writer field
       long reader1;
       long pad2[7]; 
  } buf;
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Run it through a simple loop: 
●Two threads running in parallel.
●Assume buf struct aligned on 64-byte boundary.
●loop-cnt = 500,000,000

     /* Writer thread on node 0 */
         for (i = 0; i < loop-cnt; ++i) {
                buf.writer += 1;
                asm volatile("rep; nop")
         } 

     /* Reader thread on node 1 */
         for (i = 0; i < loop-cnt; ++i) {
                var = buf.reader;
                asm volatile("rep; nop")
         }

 

Question:  
How fast can the reader 

thread complete the loop?
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Scenario 1: Both fields in one data struct

CPU0CPU0

Memory

LLC (last level cache)

CPU0CPU1 CPU0CPU2 CPU0CPU3

CPU0 L1 CPU0L1 CPU0L1 CPU0L1
CPU0 L2 CPU0L2 CPU0L2 CPU0L2

CPU0CPU4

Memory

LLC (last level cache)

CPU0CPU5 CPU0CPU6 CPU0CPU7

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

    writer  

    reader  

      

   

      

      

      

      

Reader thread
 

S
TO

R
E

Writer thread
 

HITM
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Scenario 2: Each field in own cacheline:

CPU0CPU0

Memory

LLC (last level cache)

CPU0CPU1 CPU0CPU2 CPU0CPU3

CPU0 L1 CPU0L1 CPU0L1 CPU0L1
CPU0 L2 CPU0L2 CPU0L2 CPU0L2

CPU0CPU4

Memory

LLC (last level cache)

CPU0CPU5 CPU0CPU6 CPU0CPU7

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

 writer

 pad

 pad

 pad

 pad

 pad

 pad

 pad

Reader thread
 

Writer thread
 

 reader

 pad

 pad

 pad

 pad

 pad

 pad

 pad
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Run it through a simple loop: 
●Two threads running in parallel.
●Assume buf struct aligned on 64-byte boundary.
●loop-cnt = 500,000,000

     /* Writer thread on node 0 */
         for (i = 0; i < loop-cnt; ++i) {
                buf.writer += 1;
                asm volatile("rep; nop")
         } 

     /* Reader thread on node 1 */
         for (i = 0; i < loop-cnt; ++i) {
                var = buf.reader;
                asm volatile("rep; nop")
         }

 

Question:  
How fast can the reader 

thread complete the loop?

Answer:
When “buf.writer” shares a cacheline, 
the reader thread finishes loop: 
  2-4X slower on 2 node system,
  20X slower on 4 node system.
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● Where does my program get its memory from?

● When does it hurt your performance the most?

● CPU cacheline false sharing

● How to find out where it’s happening?

● How to resolve it?



Joe Mario, Larry Woodman36

Background Basics
Resolving a memory access 

CPU5 CPU6 CPU7CPU4

L1 L1 L1 L1

L2 L2 L2

Memory for Node 1

L2
LLC (last level cache)

CPU0 CPU1 CPU2 CPU3CPU0

L1 L1 L1 L1

L2 L2 L2

Memory for Node 0

L2
LLC (last level cache)

Node 0

Node 1
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Resolving a memory access – more expensive case.

CPU5 CPU6 CPU7CPU4

L1 L1 L1 L1
L2 L2 L2

Memory

L2
LLC (last level cache)

CPU0 CPU1 CPU2 CPU3CPU0

L1 L1 L1 L1
L2 L2 L2

Memory 

L2
LLC (last level cache)

CPU9 CPU10 CPU11CPU8

L1 L1 L1 L1
L2 L2 L2

Memory 

L2
LLC (last level cache)

Request made to node 2 - 
who modified it. 

Node 2 has a modified
copy of that cacheline.

First:
CPU1 issues a read request

For the cacheline to the 
“home” node that owns the 

Memory.

Memory ref.
Node 0 Node 1

Node2
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In the ideal world:

  

All processes and 
memory are isolated 
to their own NUMA 
nodes.

CPU5 CPU6 CPU7

L1 L1 L1 L1
L2 L2 L2

Memory Node 1

L2
LLC (last level cache)

CPU0 CPU1 CPU2 CPU3CPU0

L1 L1 L1 L1
L2 L2 L2

Memory Node 0

L2
LLC (last level cache)

P0 P1 P3 P4

P4 P5 P6 P7CPU4

Node 0

Node 1
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In the “slightly less than” ideal world

  

“Sole user” of remote 
memory.

Not too bad if:

1. It fits in local node 1 cache

2. It stays in local node 1 cache

3. Your node is the only node 
accessing that memory.

CPU5 CPU6 CPU7CPU4

L1 L1 L1 L1
L2 L2 L2

Memory Node 1

L2
LLC (last level cache)

CPU0 CPU1 CPU2 CPU3CPU0

L1 L1 L1 L1
L2 L2 L2

Memory Node 0

L2
LLC (last level cache)

P0 P1 P3 P4

P4 P5 P6 P7

Node 0

Node 1
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False Sharing - Where it can hurt the 
most

  

Multiple NUMA 
nodes accessing 
same memory 
cacheline.

CPU5 CPU6 CPU7CPU4

L1 L1 L1 L1
L2 L2 L2

Memory Node 1

L2
LLC (last level cache)

CPU0 CPU1 CPU2 CPU3CPU0

L1 L1 L1 L1
L2 L2 L2

Memory Node 0

L2
LLC (last level cache)

P0 P1 P3 P4

P4 P5 P6 P7

Socket 0

Socket 1
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Basic triage steps

What does my system layout look like?
● lstopo

Where is my program’s memory located?
● numastat

Where are my program’s threads executing?
● ps -T -o pid,tid,psr,comm <pid>
● Run “top”, then enter “f”, then select “Last use cpu” field.
● trace-cmd

Where is the memory my program is accessing? 
● perf mem
● numatop  [Intel] 
● perf c2c
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lstopo – to see system 
topology
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Numastat 
Where is my program’s memory?  

Example:
Look at two unpinned instances of SPECjbb2005.

# numastat -c java 

    Per-node process memory usage (in MBs)
    PID           Node 0 Node 1 Total
    ------------  ------ ------ -----
    31855 (java)    3160   6206  9366
    31856 (java)    4891   4481  9372
    ------------  ------ ------ -----
    Total           8051  10687 18738

The memory for each pid is scattered across both numa 
nodes.
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Where is my program’s memory? 
(continued)
Invoke it again, but with numactl pinning:

    # numactl -m 0 -N 0 java <...> 
    # numactl -m 1 -N 1 java <...>
  
    # numastat -c java 

    Per-node process memory usage (in MBs)
    PID           Node 0 Node 1 Total
    ------------  ------ ------ -----
    30707 (java)    9359     11  9370
    30708 (java)       2   9374  9375
    ------------  ------ ------ -----
    Total           9361   9385 18745

The memory for each pid is confined to a numa node.
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Memory location is only part of it.
● numastat shows program’s memory location, but not threads.

● The key question:  Where are my threads executing and are they 
contending for the same memory/cachelines?

● Remote HITMs:  

If your program spans multiple numa nodes:
● Are my threads accessing memory on remote nodes?
● Are they contending for same memory locations with other threads?
● Can happen w/ multi-threaded or shared memory programs 
● Just takes contention on one contended memory location to impact 

performance.

● Local HITMs: Contention between cpu caches on same numa node 
impacting more – as motherboards pack more cores.
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LLC (last level cache)

Memory

Simple false sharing

CPU0CPU0

Memory

CPU0CPU1 CPU0CPU2 CPU0CPU3

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

CPU0CPU4

LLC (last level cache)

CPU0CPU5 CPU0CPU6 CPU0CPU7

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

64-byte cache line

   writer

   reader 

     

      

 

      

    

      

Reader 
Thread 

Cacheline 
copy
64 bytes

Writer
Thread 

Cacheline 
exclusive 
write
64 bytes
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Looking a little closer:

●Every time buf.writer is modified:
● The reader thread’s cacheline copy is disguarded.
● Must go back for an updated cacheline copy.
● Or get back in line if other threads are contending for the 

cacheline.

●With lots of threads and/or large systems:

● It takes longer for any one of them to access the cacheline.

● Often lots longer
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As your application gets larger...
Lots of contention.

64 byte cache line

Socket 0 

      is_active

      foo

      bar

      queue_lock

      is_online

      num_cpus

      num_cores

      mem_size

CPU CPU CPU CPU CPU CPU CPU CPU ...

CPU CPU CPU CPU CPU CPU CPU CPU ...
Socket 1

CPU CPU CPU CPU CPU CPU CPU CPU ...
Socket 3

Socket 2 
CPU CPU CPU CPU CPU CPU CPU CPU ...
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CPU cacheline false sharing

● Multiple threads accessing/modifying same cacheline. 

● Multiple processes to same cacheline in shared memory.

● Sharing cachelines across numa nodes costly.

● Atomic memory operations make it worse – locked 
instructions

● Larger systems (8 and 16 numa nodes) 
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CPU cacheline false sharing (continued)

Approximate latencies for accessing memory.

● L1→L3 caches:  5-30 cycles

● Local memory:  50-100 cycles

● Remote memory:  ~2x that of local memory

● On busy systems, (>= 4 sockets), load latencies caused 
by heavy false sharing often peak over 60,000 clock 
cycles 
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How to detect and find this?

New addition to the Linux perf tool:  
     perf c2c

“c2c” stands for “cache to cache”

Developed at Red Hat

Merged upstream into 4.9-rc2

Available in RHEL 7.4 

Use on Intel IVB or newer cpus 
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At a high level, “perf c2c” provides:

1)  The cacheline’s virtual addr where false sharing was detected.

2)  All the readers and writers to those cachelines.

3)  The offsets into the cachelines for those accesses.

4)  The pid, tid, instruction addr, function name, image filename.

5)  The source file and line numbers.
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At a high level, “perf c2c” provides:

1)  The node & cpu numbers where the accesses are occurring.

2)  The average load latency for the loads.

3)  Ability to see when hot variables are sharing a cacheline.

4)  Ability to see unaligned hot data structs spilling into multiple 
cachelines.

 Extensive usage info in blog at:  https://joemario.github.io/
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Questions
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Compiler & tools tips
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Get the latest bits:
   Red Hat Developer’s Toolset

Developer Toolset 7 beta adds a major update of GCC 7.2 and 
supporting toolchain

●Addition of Clang/LLVM 4.0.1 compiler set – Technology Preview*

●Addition of Go 1.8.3 compiler – Technology Preview*

●Addition of Rust 1.20 compiler – Technology Preview*
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Get the latest bits:  Red Hat Sofware Collections
Languages and frameworks
        Node.js v4.4, v6
        Perl 5.20, 5.24
        PHP 5.6, 7.0
        Python 3.5
        Ruby 2.3, 2.4
        Ruby on Rails 5.0

Databases
        MariaDB 10.1
        MongoDB 3.2
        MySQL 5.7
        PostgreSQL 9.5

Web and application servers and HTTP accelerators
        Apache httpd 2.4
        nginx 1.10
        Phusion Passenger 4.0
        Varnish 4.0

Java development tools
        Maven 3.3
        Thermostat 1.6
IDE
        Eclipse IDE 4.6.2 (Neon)
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Build steps to minimize contention:

1)  Pack read-only/read-mostly variables together.

2)  Place the hottest written variables in their own cacheline.

3)  Pad cachelines as a small tradeoff for reducing contention.

4)  Align data/buffers/structs/c++classes on cacheline boundaries.

5)  Lower the granularity of locks (lock smaller chunks of data to 
reduce contention).

6)  Use compile-time asserts to guarantee struct member alignment.

_Static_assert( offsetof(struct foo ,bar) %64 == 0,    \
   "struct member bar is not at cacheline aligned offset:");
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Aligning C++ classes
To align dynamically allocated C++ classes on a cacheline 
boundary: 

Change:
    foo *ctx = new Foo(this, tid);
to:
    void *p  = aligned_alloc (64, sizeof(Foo));
    foo *ctx = new (p) Foo(this, tid);

● The above allocates the class on a 64-byte boundary.

● Then use 

             "__attribute__((aligned (64)))”

  on individual class members needing 64-byte alignment, 
  (for items allocated in the class).
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Long load latency instructions.  
Are they in your critical path?
Start your application.
Then run perf to collect samples:

   # perf mem record -U -- -a sleep 3
   or
   # perf c2c record --all-user -- -a sleep 3

Then run:
   # perf mem report --stdio
   or
   # perf script

Then post-process the output (awk, sed, sort, etc) to find your 
longest loads, or to get a glimpse for where you’re getting your data.

(e.g.: local or remote cache, local or remote mem, modified local or 
remote cache).
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Tools I use to find who is interrupting a thread

stap cycle_thief.stp 

at https://sourceware.org/systemtap/examples/

trace-cmd 

which is a wrapper built on ftrace

hwlatdetect 

to find SMIs or anything causing the hdwe to get in the way.

https://sourceware.org/systemtap/examples/


Joe Mario, Larry Woodman62

Questions
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