
Joe Mario, Larry Woodman1

Linux Performance Tuning

Larry Woodman
Joe Mario

October 19, 2017

Joe Mario, Larry Woodman2

Agenda

● Low Latency

● CPU cacheline contention

● A few compiler & tools tips

● Fundamental kernel internals:

● Function wrt to performance
● Tuning
● Interactions between file systems, memory, &

devices
● Throughput vs latency tuning

Joe Mario, Larry Woodman3

Brief background
Tuned basics

Joe Mario, Larry Woodman4

 What is “tuned” ?

● Tuning profile delivery mechanism
● Many linux distros ship tuned profiles that

improve performance for many
workloads…

● Customize your own profile.

Joe Mario, Larry Woodman5

 Tuned (cont)

tuned-adm list
 Available profiles:
 - balanced
 - cpu-partitioning << New in 7.4
 - desktop
 - latency-performance
 - network-latency
 - network-throughput
 - powersave
 - throughput-performance
 - virtual-guest
 - virtual-host
 Current active profile: balanced

Joe Mario, Larry Woodman6

Setting tuned

What is my system currently tuned to?
•# tuned-adm active
 Current active profile: balanced

How do I change my current tuning setting?
•# tuned-adm profile network-latency

Joe Mario, Larry Woodman7

throughput-performance (RHEL7 default)

• governor=performance

• energy_perf_bias=performance

• min_perf_pct=100

• readahead=4096

• kernel.sched_min_granularity_ns = 10000000

• kernel.sched_wakeup_granularity_ns = 15000000

• vm.dirty_background_ratio = 10

• vm.swappiness=10

Joe Mario, Larry Woodman8

 Tuned: Profile Inheritance (throughput)

throughput-performance

network-throughput

governor=performance
energy_perf_bias=performance
min_perf_pct=100
readahead=4096
kernel.sched_min_granularity_ns = 10000000
kernel.sched_wakeup_granularity_ns = 15000000
vm.dirty_background_ratio = 10
vm.swappiness=10

net.ipv4.tcp_rmem="4096 87380 16777216"
net.ipv4.tcp_wmem="4096 16384 16777216"
net.ipv4.udp_mem="3145728 4194304 16777216"

Joe Mario, Larry Woodman9

Children

Parents

 Tuned: Profile Inheritance

latency-performancethroughput-performance

network-latencynetwork-throughput

virtual-host

virtual-guest

balanced

desktop

Your-DBYour-Web Your-Middleware

Joe Mario, Larry Woodman10

Low Latency Considerations

Joe Mario, Larry Woodman11

 Throughput: Bandwidth: # lanes in Highway
 - Width of data path / cachelines
 - Bus Bandwidth, QPI links, PCI 1-2-3
 - Network 1 / 10 / 40 Gb – aggregation, NAPI
 - Fiberchannel 4/8/16, SSD, NVME Drivers

Latency – Speed Limit
- Ghz of CPU, Memory PCI
- Small transfers, disable
 aggregation – TCP nodelay
- Dataplane optimization DPDK

Performance Metrics
Latency==Speed Throughput==Bandwidth

Joe Mario, Larry Woodman12

Isolcpus – widely used

0 40 1 41 2 42 3 43

4 44 5 45 6 46 7 47

8 48 9 49 10 50 11 51

12 52 53

20 60 21 61 22 62 23 63

24 64 25 65 26 66 27 67

28 68 29 69 30 70 31 71

32 72 33 73

QPI

14 54 15 55

16 56 17 57 18 58 19 59

34 74 35 75

36 76 37 77 38 78 39 79

13

Node 0 Node 1

Boot with “isolcpus=1,5,9,13,17,20,24,28,32,36”

Run your application(s) that pins individual threads to the isolated cores.

Life is good.

Joe Mario, Larry Woodman13

Isolcpus – no scheduler load balancing

Boot your system with “isolcpus=1,2,3,4”

Then run:
 taskset -c 1,2,3,4 yes > /dev/null &
 taskset -c 1,2,3,4 yes > /dev/null &
 taskset -c 1,2,3,4 yes > /dev/null &
 taskset -c 1,2,3,4 yes > /dev/null &

Result: All four “yes” processes will run only on cpu 1.
 CPUs 2,3 and 4 will be idle.

Joe Mario, Larry Woodman14

Isolcpus – no scheduler load balancing

Then try:
 taskset -c 1 yes > /dev/null &

 taskset -c 2 yes > /dev/null &

 taskset -c 3 yes > /dev/null &

 taskset -c 4 yes > /dev/null &
Or:

 taskset -c 1,2,3,4 chrt --rr 1 yes > /dev/null &

 taskset -c 1,2,3,4 chrt --rr 1 yes > /dev/null &

 taskset -c 1,2,3,4 chrt --rr 1 yes > /dev/null &

 taskset -c 1,2,3,4 chrt --rr 1 yes > /dev/null &

Result: All four “yes” processes will be spread across cpus 1,2,3,4
With kernel isolcpus,

● must manually pin processes or individual threads,
● or use realtime scheduling (chrt)

Joe Mario, Larry Woodman15

Isolcpus doesn’t work for larger applications
VNF Mobile Network - Graphical CPU Partitioning

: isolcpus=1-19,21-39,41-59,61-79

0 40 1 41 2 42 3 43

4 44 5 45 6 46 7 47

8 48 9 49 10 50 11 51

12 52 13 53

20 60 21 61 22 62 23 63

24 64 25 65 26 66 27 67

28 68 29 69 30 70 31 71

32 72 33 73

QPI

14 54 15 55

16 56 17 57 18 58 19 59

34 74 35 75

36 76 37 77 38 78 39 79

Physical
core

CPU
Thread

Kernel
Background activities

Kernel Interrupts
OVS Background

process

OVS “poll mode
driver”

PMD Threads

VNF NUMA 0
Threads

VNF NUMA 1
Threads

QEMU
emulation
process

New
in7.4

Joe Mario, Larry Woodman16

New “cpu-partitioning” tuned profile

● For latency sensitive applications needing kernel
scheduler load balancing:

● Decide which cpus you want to allocated to it.
● Add those cpus to a tuned configuration file.

 /etc/tuned/cpu-partitioning-variables.conf
● Set the cpu-partitioning tuned profile.

 # tuned-adm profile cpu-partitioning
● Then reboot!

Joe Mario, Larry Woodman17

Cpu-partitioning – after reboot you have:

Sets cpu affinity mask away from isolated cpus for:
● All processes spawned by systemd, IRQs, RCU callbacks
● Kernel thread issuing dirty page writebacks
● Kworker workqueues for interrupts, timers, I/O, etc.

Sets nohz_full on isolated cpus

Disables intel idle driver to prevent frequency scaling

Sets nosoftlockup and disables KSM (kernel same page merging)

Sets mce=ignore_ce (preventing periodic polling of machine check
banks)

Sets pause loop exit and ple_gap KVM options set to minimize VM exits

Uses tuna to move all user processes away from isolated cpus.
 For example: # tuna -c 4,5,6,7 -i

Joe Mario, Larry Woodman18

Cpu-partitioning – after reboot (continued):
● kernel.hung_task_timeout_secs = 600

● kernel.nmi_watchdog = 0

● vm.stat_interval = 10

● kernel.timer_migration = 1

● net.core.busy_read = 50 and net.core.busy_poll = 50

● kernel.numa_balancing = 0

● kernel.sched_min_granularity_ns = 10000000

● vm.dirty_ratio = 10

● vm.dirty_background_ratio = 3

● vm.swappiness = 10

● kernel.sched_migration_cost_ns = 5000000

● Disable Transparent Hugepages

Joe Mario, Larry Woodman19

Cpu-partitioning – after reboot (continued):

Also sets these tuned parameters
● force_latency = 1
● governor = performance
● energy_perf_bias = performance
● min_perf_pct = 100

Does not set the “isolcpus=” kernel cpu flag
● isolcpus= disables the load balancer
● We’ve measured load balancer hit to be about 40 usec
● Disabling load balancer will soon be an option.

 “no_rebalance_cores=” coming soon.

Also does not set the “skew_tick=1” flag (yet)

Joe Mario, Larry Woodman20

Cstate considerations

● C0
● Most responsive – cpus fully turned on
● Prevents turbo mode.

● C1
● Most common.
● Red Hat uses C1 in its tuned profiles.

● C3
● We’re seeing *a few* applications run faster with C3.
● Lowering all cpus to C3 allows for more turbo headroom

for the cpus that need it.
● Depends on your application

Joe Mario, Larry Woodman21

Cache Allocation & Cache Monitoring Technology
Noisy Cacheline Neighbor

Hi Priority
 Program

LO Priority
Program

CPU 0,1 CPU 2,3

Shared Last Level Cache:
(Low Priority Program gets more cache)

Hi Priority
Program

LO Priority
Program

CPU 0,1 CPU 2,3

Shared Last Level Cache:
(HIGH Priority Program gets more cache)

Available in RHEL 7.4 via the intel-cmt-cat-*.el7 package.
See ‘man pqos’
Intel only. (Some Haswells, all Broadwells, Skylake errata)

VS:

New
in7.4

Joe Mario, Larry Woodman22

Memory latency testing using CAT

Joe Mario, Larry Woodman23

Process Tuning Tool - tuna
● Fine grained control
● Display applications

& processes
● CPU enumeration
● Socket (useful for

NUMA tuning)
● Dynamic control of:

● Process affinity

● Parent & threads

● Scheduling policy

● Device IRQ priorities,
etc

Joe Mario, Larry Woodman24

tuna command line

Joe Mario, Larry Woodman25

Tuna – command line examples

Move an irq to cpu 5
● tuna -c5 -q eth4-rx-4 –move

Move all irqs named “eth4*” away from numa node 1
● tuna -S 1 -i -q ‘eth4*’

Move all rcu kernel threads to cpus 1 and 3
● tuna -c1,3 -t ‘*rcu*’ --move

Joe Mario, Larry Woodman26

Tuna GUI Capabilities Updated for RHEL7

Joe Mario, Larry Woodman27

Questions

Joe Mario, Larry Woodman28

Identifying cpu cacheline
contention

Joe Mario, Larry Woodman29

Look at a simple example false sharing
example:

Two scenarios of a basic data structure

 struct false_sharing_buf { // Reader & writer
 long writer; // fields together
 long reader;
 } buf ;

 struct uncontended_buf { // Writer fields
 long writer; // separated from
 long pad[7]; // writer field
 long reader1;
 long pad2[7];
 } buf;

Joe Mario, Larry Woodman30

Run it through a simple loop:
●Two threads running in parallel.
●Assume buf struct aligned on 64-byte boundary.
●loop-cnt = 500,000,000

 /* Writer thread on node 0 */
 for (i = 0; i < loop-cnt; ++i) {
 buf.writer += 1;
 asm volatile("rep; nop")
 }

 /* Reader thread on node 1 */
 for (i = 0; i < loop-cnt; ++i) {
 var = buf.reader;
 asm volatile("rep; nop")
 }

Question:
How fast can the reader

thread complete the loop?

Joe Mario, Larry Woodman31

Scenario 1: Both fields in one data struct

CPU0CPU0

Memory

LLC (last level cache)

CPU0CPU1 CPU0CPU2 CPU0CPU3

CPU0 L1 CPU0L1 CPU0L1 CPU0L1
CPU0 L2 CPU0L2 CPU0L2 CPU0L2

CPU0CPU4

Memory

LLC (last level cache)

CPU0CPU5 CPU0CPU6 CPU0CPU7

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

 writer

 reader

Reader thread

S
TO

R
E

Writer thread

HITM

Joe Mario, Larry Woodman32

Scenario 2: Each field in own cacheline:

CPU0CPU0

Memory

LLC (last level cache)

CPU0CPU1 CPU0CPU2 CPU0CPU3

CPU0 L1 CPU0L1 CPU0L1 CPU0L1
CPU0 L2 CPU0L2 CPU0L2 CPU0L2

CPU0CPU4

Memory

LLC (last level cache)

CPU0CPU5 CPU0CPU6 CPU0CPU7

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

 writer

 pad

 pad

 pad

 pad

 pad

 pad

 pad

Reader thread

Writer thread

 reader

 pad

 pad

 pad

 pad

 pad

 pad

 pad

Joe Mario, Larry Woodman33

Run it through a simple loop:
●Two threads running in parallel.
●Assume buf struct aligned on 64-byte boundary.
●loop-cnt = 500,000,000

 /* Writer thread on node 0 */
 for (i = 0; i < loop-cnt; ++i) {
 buf.writer += 1;
 asm volatile("rep; nop")
 }

 /* Reader thread on node 1 */
 for (i = 0; i < loop-cnt; ++i) {
 var = buf.reader;
 asm volatile("rep; nop")
 }

Question:
How fast can the reader

thread complete the loop?

Answer:
When “buf.writer” shares a cacheline,
the reader thread finishes loop:
 2-4X slower on 2 node system,
 20X slower on 4 node system.

Joe Mario, Larry Woodman34

0

5000

10000

15000

20000

25000

30000

Latencies for longest 1000 instructions.
Unpinned vs pinned ceph OSDs

Unpinned
Pinned

Longest 1000 loads

La
te

nc
y

-
in

 m
ac

hi
ne

 c
yc

le
s

Ceph OSDs simultaneously accessing struct and locks,
across two numa nodes vs pinned to one numa node.

Joe Mario, Larry Woodman35

● Where does my program get its memory from?

● When does it hurt your performance the most?

● CPU cacheline false sharing

● How to find out where it’s happening?

● How to resolve it?

Joe Mario, Larry Woodman36

Background Basics
Resolving a memory access

CPU5 CPU6 CPU7CPU4

L1 L1 L1 L1

L2 L2 L2

Memory for Node 1

L2
LLC (last level cache)

CPU0 CPU1 CPU2 CPU3CPU0

L1 L1 L1 L1

L2 L2 L2

Memory for Node 0

L2
LLC (last level cache)

Node 0

Node 1

Joe Mario, Larry Woodman37

Resolving a memory access – more expensive case.

CPU5 CPU6 CPU7CPU4

L1 L1 L1 L1
L2 L2 L2

Memory

L2
LLC (last level cache)

CPU0 CPU1 CPU2 CPU3CPU0

L1 L1 L1 L1
L2 L2 L2

Memory

L2
LLC (last level cache)

CPU9 CPU10 CPU11CPU8

L1 L1 L1 L1
L2 L2 L2

Memory

L2
LLC (last level cache)

Request made to node 2 -
who modified it.

Node 2 has a modified
copy of that cacheline.

First:
CPU1 issues a read request

For the cacheline to the
“home” node that owns the

Memory.

Memory ref.
Node 0 Node 1

Node2

Joe Mario, Larry Woodman38

In the ideal world:

All processes and
memory are isolated
to their own NUMA
nodes.

CPU5 CPU6 CPU7

L1 L1 L1 L1
L2 L2 L2

Memory Node 1

L2
LLC (last level cache)

CPU0 CPU1 CPU2 CPU3CPU0

L1 L1 L1 L1
L2 L2 L2

Memory Node 0

L2
LLC (last level cache)

P0 P1 P3 P4

P4 P5 P6 P7CPU4

Node 0

Node 1

Joe Mario, Larry Woodman39

In the “slightly less than” ideal world

“Sole user” of remote
memory.

Not too bad if:

1. It fits in local node 1 cache

2. It stays in local node 1 cache

3. Your node is the only node
accessing that memory.

CPU5 CPU6 CPU7CPU4

L1 L1 L1 L1
L2 L2 L2

Memory Node 1

L2
LLC (last level cache)

CPU0 CPU1 CPU2 CPU3CPU0

L1 L1 L1 L1
L2 L2 L2

Memory Node 0

L2
LLC (last level cache)

P0 P1 P3 P4

P4 P5 P6 P7

Node 0

Node 1

Joe Mario, Larry Woodman40

False Sharing - Where it can hurt the
most

Multiple NUMA
nodes accessing
same memory
cacheline.

CPU5 CPU6 CPU7CPU4

L1 L1 L1 L1
L2 L2 L2

Memory Node 1

L2
LLC (last level cache)

CPU0 CPU1 CPU2 CPU3CPU0

L1 L1 L1 L1
L2 L2 L2

Memory Node 0

L2
LLC (last level cache)

P0 P1 P3 P4

P4 P5 P6 P7

Socket 0

Socket 1

Joe Mario, Larry Woodman41

Basic triage steps

What does my system layout look like?
● lstopo

Where is my program’s memory located?
● numastat

Where are my program’s threads executing?
● ps -T -o pid,tid,psr,comm <pid>
● Run “top”, then enter “f”, then select “Last use cpu” field.
● trace-cmd

Where is the memory my program is accessing?
● perf mem
● numatop [Intel]
● perf c2c

Joe Mario, Larry Woodman42

lstopo – to see system
topology

Joe Mario, Larry Woodman43

Numastat
Where is my program’s memory?

Example:
Look at two unpinned instances of SPECjbb2005.

numastat -c java

 Per-node process memory usage (in MBs)
 PID Node 0 Node 1 Total
 ------------ ------ ------ -----
 31855 (java) 3160 6206 9366
 31856 (java) 4891 4481 9372
 ------------ ------ ------ -----
 Total 8051 10687 18738

The memory for each pid is scattered across both numa
nodes.

Joe Mario, Larry Woodman44

Where is my program’s memory?
(continued)
Invoke it again, but with numactl pinning:

 # numactl -m 0 -N 0 java <...>
 # numactl -m 1 -N 1 java <...>

 # numastat -c java

 Per-node process memory usage (in MBs)
 PID Node 0 Node 1 Total
 ------------ ------ ------ -----
 30707 (java) 9359 11 9370
 30708 (java) 2 9374 9375
 ------------ ------ ------ -----
 Total 9361 9385 18745

The memory for each pid is confined to a numa node.

Joe Mario, Larry Woodman45

Memory location is only part of it.
● numastat shows program’s memory location, but not threads.

● The key question: Where are my threads executing and are they
contending for the same memory/cachelines?

● Remote HITMs:

If your program spans multiple numa nodes:
● Are my threads accessing memory on remote nodes?
● Are they contending for same memory locations with other threads?
● Can happen w/ multi-threaded or shared memory programs
● Just takes contention on one contended memory location to impact

performance.

● Local HITMs: Contention between cpu caches on same numa node
impacting more – as motherboards pack more cores.

Joe Mario, Larry Woodman46

LLC (last level cache)

Memory

Simple false sharing

CPU0CPU0

Memory

CPU0CPU1 CPU0CPU2 CPU0CPU3

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

CPU0CPU4

LLC (last level cache)

CPU0CPU5 CPU0CPU6 CPU0CPU7

CPU0L1 CPU0L1 CPU0L1 CPU0L1
CPU0L2 CPU0L2 CPU0L2 CPU0L2

64-byte cache line

 writer

 reader

Reader
Thread

Cacheline
copy
64 bytes

Writer
Thread

Cacheline
exclusive
write
64 bytes

Joe Mario, Larry Woodman47

Looking a little closer:

●Every time buf.writer is modified:
● The reader thread’s cacheline copy is disguarded.
● Must go back for an updated cacheline copy.
● Or get back in line if other threads are contending for the

cacheline.

●With lots of threads and/or large systems:

● It takes longer for any one of them to access the cacheline.

● Often lots longer

Joe Mario, Larry Woodman48

As your application gets larger...
Lots of contention.

64 byte cache line

Socket 0

 is_active

 foo

 bar

 queue_lock

 is_online

 num_cpus

 num_cores

 mem_size

CPU CPU CPU CPU CPU CPU CPU CPU ...

CPU CPU CPU CPU CPU CPU CPU CPU ...
Socket 1

CPU CPU CPU CPU CPU CPU CPU CPU ...
Socket 3

Socket 2
CPU CPU CPU CPU CPU CPU CPU CPU ...

Joe Mario, Larry Woodman49

CPU cacheline false sharing

● Multiple threads accessing/modifying same cacheline.

● Multiple processes to same cacheline in shared memory.

● Sharing cachelines across numa nodes costly.

● Atomic memory operations make it worse – locked
instructions

● Larger systems (8 and 16 numa nodes)

Joe Mario, Larry Woodman50

CPU cacheline false sharing (continued)

Approximate latencies for accessing memory.

● L1→L3 caches: 5-30 cycles

● Local memory: 50-100 cycles

● Remote memory: ~2x that of local memory

● On busy systems, (>= 4 sockets), load latencies caused
by heavy false sharing often peak over 60,000 clock
cycles

Joe Mario, Larry Woodman51

How to detect and find this?

New addition to the Linux perf tool:
 perf c2c

“c2c” stands for “cache to cache”

Developed at Red Hat

Merged upstream into 4.9-rc2

Available in RHEL 7.4

Use on Intel IVB or newer cpus

Joe Mario, Larry Woodman52

At a high level, “perf c2c” provides:

1) The cacheline’s virtual addr where false sharing was detected.

2) All the readers and writers to those cachelines.

3) The offsets into the cachelines for those accesses.

4) The pid, tid, instruction addr, function name, image filename.

5) The source file and line numbers.

Joe Mario, Larry Woodman53

At a high level, “perf c2c” provides:

1) The node & cpu numbers where the accesses are occurring.

2) The average load latency for the loads.

3) Ability to see when hot variables are sharing a cacheline.

4) Ability to see unaligned hot data structs spilling into multiple
cachelines.

 Extensive usage info in blog at: https://joemario.github.io/

Joe Mario, Larry Woodman54

Questions

Joe Mario, Larry Woodman55

Compiler & tools tips

Joe Mario, Larry Woodman56

Get the latest bits:
 Red Hat Developer’s Toolset

Developer Toolset 7 beta adds a major update of GCC 7.2 and
supporting toolchain

●Addition of Clang/LLVM 4.0.1 compiler set – Technology Preview*

●Addition of Go 1.8.3 compiler – Technology Preview*

●Addition of Rust 1.20 compiler – Technology Preview*

Joe Mario, Larry Woodman57

Get the latest bits: Red Hat Sofware Collections
Languages and frameworks
 Node.js v4.4, v6
 Perl 5.20, 5.24
 PHP 5.6, 7.0
 Python 3.5
 Ruby 2.3, 2.4
 Ruby on Rails 5.0

Databases
 MariaDB 10.1
 MongoDB 3.2
 MySQL 5.7
 PostgreSQL 9.5

Web and application servers and HTTP accelerators
 Apache httpd 2.4
 nginx 1.10
 Phusion Passenger 4.0
 Varnish 4.0

Java development tools
 Maven 3.3
 Thermostat 1.6
IDE
 Eclipse IDE 4.6.2 (Neon)

Joe Mario, Larry Woodman58

Build steps to minimize contention:

1) Pack read-only/read-mostly variables together.

2) Place the hottest written variables in their own cacheline.

3) Pad cachelines as a small tradeoff for reducing contention.

4) Align data/buffers/structs/c++classes on cacheline boundaries.

5) Lower the granularity of locks (lock smaller chunks of data to
reduce contention).

6) Use compile-time asserts to guarantee struct member alignment.

_Static_assert(offsetof(struct foo ,bar) %64 == 0, \
 "struct member bar is not at cacheline aligned offset:");

Joe Mario, Larry Woodman59

Aligning C++ classes
To align dynamically allocated C++ classes on a cacheline
boundary:

Change:
 foo *ctx = new Foo(this, tid);
to:
 void *p = aligned_alloc (64, sizeof(Foo));
 foo *ctx = new (p) Foo(this, tid);

● The above allocates the class on a 64-byte boundary.

● Then use

 "__attribute__((aligned (64)))”

 on individual class members needing 64-byte alignment,
 (for items allocated in the class).

Joe Mario, Larry Woodman60

Long load latency instructions.
Are they in your critical path?
Start your application.
Then run perf to collect samples:

 # perf mem record -U -- -a sleep 3
 or
 # perf c2c record --all-user -- -a sleep 3

Then run:
 # perf mem report --stdio
 or
 # perf script

Then post-process the output (awk, sed, sort, etc) to find your
longest loads, or to get a glimpse for where you’re getting your data.

(e.g.: local or remote cache, local or remote mem, modified local or
remote cache).

Joe Mario, Larry Woodman61

Tools I use to find who is interrupting a thread

stap cycle_thief.stp

at https://sourceware.org/systemtap/examples/

trace-cmd

which is a wrapper built on ftrace

hwlatdetect

to find SMIs or anything causing the hdwe to get in the way.

https://sourceware.org/systemtap/examples/

Joe Mario, Larry Woodman62

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	throughput-performance (R7 default)
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

