JUNE 2017 Cooper Union Copper and Optical Fiber Technology Update

Brian Smith, RCDD/NTS
000
Optical Cable Corporation North East Technical Sales Specialist

TALKING POINTS

OCC History and US Manufacturing Plants History of Copper Cabling IT Technology Pros & Cons and Choosing the Right Copper Cabling Category Power Over Ethernet and Issues with utilization of POE Pros & Cons and Choosing the Right Optical Fiber Cable Standards and Codes as they pertain to Infrastructure Designs

OCC Headquarters

Roanoke VA Fiber Manufacturing

- WHERE IT ALL STARTED
 Incorporated in 1983
 Technology & cable design based on US Government funded cable development
- Programs at ITT
 Headquarters and Production Facility based in

- Roanoke, VA
 ISO 9001:2008 Certified
 MIL-STD-790F Certified

OCC US Copper and Component Manufacturing

- Acquired Applied Optical Systems (AOS) on November 1st, 2009 and became our OCC Dallas facility
- Located just outside of Dallas, TX in Plano.
- MIL-STD-790 Quality Systems
- QPL/QPD Qualified Parts List Products

Decision Time??!! Copper Pros and Cons

Copper Pros

- Client Familiarity
- Most Common Media
- **All Contractors Familiar** •
- Multiple Vendor Support .
- •
- POE Power Over Ethernet . Shielded and Ur
- . **EMI issue with UTP** .
 - **Shielded Cable needs Ground** Y 30M

Copper Cons

Distance Limitations

POE Bundle Heating

Fill Factor with Cat 6A

• Cat 8 Up to 40

200C

Jnsnielaea	•	Cat 8 good to (JNI
Gb/sec			

•

•

Choosing the Right Copper Cable

- Category 5 or lower should NEVER be used today
- Category 5e should only be used in existing and used to match existing infrastructure
- Category 6 should be the MINIMUM choice for all new installations. This category gives a path for 1 Gb Ethernet
- Category 6A SHOULD be considered for all new Enterprise installations. Larger cable conductors give increased margin for POE+ and eventual POE++

Choosing the Right Copper Cable

- · Consider the use of Shielded Cat 6A due to EMI
- It should be noted that Category 7 was never approved by ANSI and TIA. There IS an ISO Standard that would have mirrored the Cat 7 standard. This ISO Class "FA" is a 1000 MHz shielded Solution. This solution is NOT widely deployed.
- Category 8 has recently been approved and is a 40Gb infrastructure for a LIMITED distance of 30M. This solution is a Data Center ONLY option.

POWER OVER ETHERNET (POE)

POE ++ Expected ratification 1Q 2018

 \mathbf{O}

OCC Category 6A AND NEW Cat 8 Field Terminable Plug Performance Meets ANSI/TIA-568-C.2-1 Category 8 Supports IEEE 802.3bq 40GBASE-T

Decision Time??!! Fiber Pros and Cons

OPTICAL FIBER CONNECTORS CHOICES

VINTAGE AND LESS COMMON OPTIONS

OPTICAL FIBER CONNECTORS CHOICES

COMMONLY USED CONNECTORS TODAY

6

What is a Fiber?

- A Multilayer Optical Filament, with a....
 - Core: carries the light

 - Cladding: keeps the light in the core
 Buffers: plastic buffers and coatings to protect the fiber

- OM1 Fiber, 62.5 micron fiber, should only be implemented where it is an extension of an existing network is necessary and not used in any greenfield project
- OM2 Fiber,, original (non LOMM) 50 micron fiber, . should only rarely be used and NOT generally installed.
- OM3 Fiber, LOMM 50 micron fiber is generally a good choice for most Enterprise Networks. It is an appropriate choice for 10Gb networks up to 300M

200C

What Fiber Should We Implement

- OM4 Fiber, LOMM 50 micron Fiber is another choice for Enterprise Networks, this fiber is necessary for networks greater than 300M and less than 550M. Some consultants suggest OM4 as their default choice unless the distance is greater than 550M
- OM5 Fiber, LOMM 50 micron fiber, called Short Wave Division Multiplexing and is now known as Wide Band Multimode Fiber. This solution uses four frequencies, each up to 25 Gb/s for total of 100Gb/s. Distance is limited to 100Meters.
- The Cable Color for OM5 is LIME GREEN

DATA CENTER ISSUES AND CONCERNS

- Density within Racks and Cabinets
- Should Luse Copper/LOMM Fiber or Singlemode Fiber
 Cooling/Eliminating or Removing Heat from DC
 Overhead Cabling or Under Floor Cable

Important Code issues for Copper&Fiber

COPPER CABLE NEC CODE

- Plenum (CMP) Rated Copper Communications Cable Riser (CMR) Rated Copper Communications Cable Low Smoke Zero Halogen (LSZH) Rated Comm Cable* *Not approved by NEC, but used in locations like RR **OPTICAL FIBER CABLE NEC CODE** Plenum (OFNP) Fiber Non-Conductive Plenum
- Plenum (OFCP) Fiber Conductive Plenum
- Riser (OFNR) Fiber Non-Conductive Riser

Riser (OFCR) Fiber Conductive Plenum

IMPORTANT STANDARDS

ANSI/TIA 568 SUITE OF STANDARDS

- 568.0-D GENERIC TELECOM CABLING
 568.1-D COMMERCIAL BUILDING TELECOM
 568-C2 TWISTED PAIR CABLE AND COMPONENT
 568-C3 OPTICAL CABLE AND COMPONENT
 568-C4 COAXIAL CABLE

OTHER ANSI/TIA IMPORTANT STANDARDS

- 569-D COMMERCIAL BUILDING PATHWAY AND SPACES
 606-B ADMINISTRATION FOR TELECOM AND INFRASTRUCTURE IN COMMERCIAL BLDG
 607-C BONDING AND GROUNDING
 942-A DATA CENTER INFRASTRUCTURE

Evolution of the Ethernet Standard

- 1983 802.3 The Standard was for Thick Coax ONLY
- 1990 802.3i 10 Base T UTP for 10 Mb Ethernet
- 1995 802.3u 100 Base TX UTP for 100 Mb 1999 802.3ab 1000 Base T UTP for 1 Gb
- 2003 802.3af Initial POE @ 15. 4 Watts
- 2009 802.3at Present POE Standard @ 25.5 Watts

NEXT GEN ETHERNET

IEEE Standards Update: As of May 2017 802.3bs Task Force

200 and 400GbE

OUESTIONS PLEASE • Brian J Smith, RCDD/NTS Northeast Technical Sales Specialist Brian smith@occliber.com